Thermal Heating

Another phenomenon, sometimes useful in the measurement of electric currents, is the fact that whenever current flows through a conductor having any resistance, that conductor is heated. All conductors have some resistance; none are perfect. The extent of this heating is proportional to the amount of current being carried by the wire.

By choosing the right metal or alloy, and by making the wire a certain length and diameter, and by employing a sensitive thermometer, and by putting the entire assembly inside a thermally insulating package, a hot-wire meter can be made. The hot-wire meter can measure ac as well as dc, because the current-heating phenomenon does not depend on the direction of current flow.

A variation of the hot-wire principle can be used to advantage by placing two different metals into contact with each other. If the right metals are chosen, the junction heats up when a current flows through it. This is called the thermocouple principle. As with the hot-wire meter, a thermometer can be used to measure the extent of the heating. But there is also another effect. A thermocouple, when it gets warm, generates dc. This dc can be measured with a galvanometer. This method is useful when it is necessary to have a fast meter response time.

The hot-wire and thermocouple effects are sometimes used to measure ac at high frequencies, in the range of hundreds of kilohertz up to tens of gigahertz.